Degradation of the epidermal-dermal junction by proteolytic enzymes from human skin and human polymorphonuclear leukocytes
نویسندگان
چکیده
The degradation of normal human skin by the human polymorphonuclear leukocyte proteinases cathepsin G and elastase, and by a human skin chymotrypsin-like proteinase that appears to be a mast cell constituent, was examined. Enzymes were incubated with fresh, split-thickness skin for up to 8 h; the tissue was examined ultrastructurally and immunohistochemically using antibodies to known basement membrane constituents. In all cases, the primary damage observed was at the epidermal-dermal junction. Elastase degraded the lamina densa leaving scattered and disorganized anchoring fibrils, dermal microfibril bundles, and normal-appearing collagen fibers. Immunohistochemically, type IV collagen, laminin, KF1 antigen, and EBA antigen were absent. The bullous pemphigoid antigen was present and localized on the basal cells. Epidermal-dermal separation produced by the chymotrypsin-like proteinases, cathepsin G, and the human skin proteinase, was confined to the lamina lucida. The lamina densa and sub-lamina densa fibrillar network remained intact. The human skin chymotrypsin-like proteinase produced extensive epidermal-dermal separation, while cathepsin G, at comparable concentrations, produced only focal separations. Immunohistochemically, all antigens were present after incubation with enzyme. The bullous pemphigoid antigen, however, was found on the epidermal side of the split, while laminin was found on the dermal side. These results show that the epidermal-dermal junction is highly susceptible to neutral serine proteinases located in mast cells and polymorphonuclear leukocytes. Although all the proteinases produce epidermal-dermal separation, the patterns and extent of degradation are different. The distinctive patterns of degradation may provide a clue to the involvement of these proteinases in skin diseases.
منابع مشابه
Gene Expression Profiling in Dermatitis Herpetiformis Skin Lesions
Dermatitis herpetiformis (DH) is an autoimmune blistering skin disease associated with gluten-sensitive enteropathy (CD). In order to investigate the pathogenesis of skin lesions at molecular level, we analysed the gene expression profiles in skin biopsies from 6 CD patients with DH and 6 healthy controls using Affymetrix HG-U133A 2.0 arrays. 486 genes were differentially expressed in DH skin c...
متن کاملVariation in basement membrane topography in human thick skin.
Samples of human plantar and palmar skin were excised and incubated in 20 mM EDTA after which the epidermis was gently separated from the dermis with the plane of separation occurring in the lamina lucida. Scanning electron microscopic examination of the dermal component revealed the classically described series of regularly spaced grooves and papillae that characterize the epidermal-dermal jun...
متن کاملGranulocyte-derived elastase and gelatinase B are required for dermal-epidermal separation induced by autoantibodies from patients with epidermolysis bullosa acquisita and bullous pemphigoid.
Epidermolysis bullosa acquisita (EBA) and bullous pemphigoid (BP) are two clinically and immunologically distinct autoimmune subepidermal blistering skin diseases associated with IgG autoantibodies against the dermal-epidermal junction. BP antibodies are directed against the hemidesmosomal antigens BP180 and BP230, and those in patients with EBA target type VII collagen, a major component of an...
متن کاملSolar Ultraviolet Irradiation Induces Decorin Degradation in Human Skin Likely via Neutrophil Elastase
Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predo...
متن کاملThermal responses of ex vivo human skin during multiple cryogen spurts and 1,450 nm laser pulses.
BACKGROUND AND OBJECTIVE Although cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic surgery, concern has been expressed that CSC may induce cryo-injury. The objective of this study is to measure temperature variations at the epidermal-dermal junction in ex vivo human skin during three clinically relevant multiple cryogen spurt-laser pulse seq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 160 شماره
صفحات -
تاریخ انتشار 1984